Unconventional Increase in Non-Radiative Transitions in Plasmon-Enhanced Luminescence: A Distance-Dependent Coupling

نویسندگان

  • Eder José Guidelli
  • Ana Paula Ramos
  • Oswaldo Baffa
چکیده

We used Optically Stimulated Luminescence (OSL) from X-ray-irradiated sodium chloride nanocrystals to investigate how silver nanoparticle (AgNP) films enhanced luminescence. We controlled the emitter-AgNP distance and used the OSL intensity and decay times to explore the plasmonic interactions underlying the enhanced luminescence. Both intensity and decay times depended on the emitter-AgNP distance, which suggested that a mechanism involving energy transfer from the localized surface plasmons (LSPs) to the trapped electrons took place through a distance-dependent coupling. Compared to other plasmon-enhanced mechanisms, the energy transfer observed here occurred in the opposite bias: LSP relaxation stimulated electron transfer from non-optically active traps to optically active traps, which culminated in enhanced emission. Therefore, a different mechanism of plasmonic coupling converted optically unreachable electrons into useful luminescence information.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distance-dependent plasmonic enhancement via radiative transitions of europium complex.

We elucidated the distance-dependent plasmonic effects on radiative transitions from an Eu(3+) ion-doped phosphor by varying the thickness of the dielectric spacer. Magnesium oxide prepared by electron-beam evaporation was chosen for the dielectric spacer. Spectral overlap between emission from Eu(3+) ions and the plasmon band of Ag nanoparticles led to improved luminescence intensity. This lum...

متن کامل

Spectral Selectivity of Plasmonic Interactions between Individual Up-Converting Nanocrystals and Spherical Gold Nanoparticles

We experimentally demonstrate strong spectral selectivity of plasmonic interaction that occurs between α-NaYF₄:Er3+/Yb3+ nanocrystals, which feature two emission bands, and spherical gold nanoparticles, with plasmon frequency resonant with one of the emission bands. Spatially-resolved luminescence intensity maps acquired for individual nanocrystals, together with microsecond luminescence lifeti...

متن کامل

Distance Dependence of Gold-Enhanced Upconversion luminescence in Au/SiO2/Y2O3:Yb3+, Er3+ Nanoparticles

We report a localized surface plasmon enhanced upconversion luminescence in Au/SiO2/Y2O3:Yb3+,Er3+ nanoparticles when excited at 980 nm. By adjusting the silica spacer's thickness, a maximum 9.59-fold enhancement of the green emission was obtained. Effect of the spacer distance on the Au-Y2O3:Yb3+, Er3+ green upconversion mechanism was numerically simulated and experimentally demonstrated. In t...

متن کامل

Control of plasmon emission and dynamics at the transition from classical to quantum coupling.

With nanosecond radiative lifetimes, quenching dominates over enhancement for conventional fluorescence emitters near metal interfaces. We explore the fundamentally distinct behavior of photoluminescence (PL) with few-femtosecond radiative lifetimes of a coupled plasmonic emitter. Controlling the emitter-surface distance with subnanometer precision by combining atomic force and scanning tunneli...

متن کامل

Coupling single quantum dots to plasmonic nanocones: optical properties.

Coupling a single quantum emitter, such as a fluorescent molecule or a quantum dot (QD), to a plasmonic nanostructure is an important issue in nano-optics and nano-spectroscopy, relevant for a wide range of applications, including tip-enhanced near-field optical microscopy, plasmon enhanced molecular sensing and spectroscopy, and nanophotonic amplifiers or nanolasers, to mention only a few. Whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016